

Ambulance planning with and without region borders

Theresia van Essen, Melanie Reuter Johann Hurink, Stefan Nickel

Situation in the Netherlands

- 24 regions
- Low coverage at region borders
- Number of ambulances could be decreased

Model

- Extension of MEXCLP
 - Busy fraction for each demand location
 - Busy fraction is iteratively improved¹
 - Binary search on number of ambulances

¹Optimal ambulance location with random delays and travel times A. Ingolfsson, S. Budge, E. Erkut in Health Care Management Science (2008) 26 June 2014 Ambulance planning with and without region borders 3

MEXCLP

$$\max \sum_{i \in I} \sum_{k=1}^{p} d_i (1-q) q^{k-1} y_{ik}$$

Maximize coverage

 $\sum_{j \in W_i} x_j \ge \sum_{k=1}^{\nu} y_{ik} , \forall i \in I$

Determine coverage

$$\sum_{j\in J} x_j \leq p$$

 $x_j \in \mathbb{N}, \forall j \in J$

Limit number of ambulances

$$y_{ik} \in \{0,1\}, \forall i \in I, k = 1, ..., p$$

26 June 2014

Ambulance planning with and without region borders

MEXCLP-*i*

$$\max \sum_{i \in I} \sum_{k=1}^{p} d_i (1 - q_i) q_i^{k-1} y_{ik}$$

Maximize coverage

$$\sum_{j \in W_i} x_j \geq \sum_{k=1}^p y_{ik} \text{ , } \forall i \in I$$

Determine coverage

$$\sum_{j\in J} x_j \leq p$$

 $x_i \in \mathbb{N}, \forall j \in J$

Limit number of ambulances

$$y_{ik} \in \{0,1\}, \forall i \in I, k = 1, ..., p$$

Approach

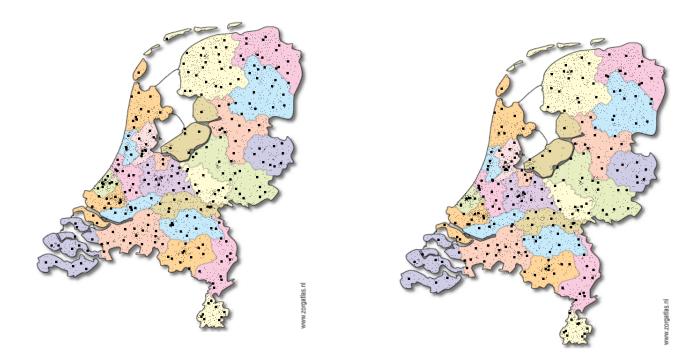
- Start with initial busy fraction
- Repeat until local optimum is reached:
 - Solve MEXCLP-i
 - Determine new busy fraction

Determine new busy fraction

- Assign each demand location to one or more opened base locations, $z_{ij} \in [0,1]$
- Minimize the maximum busy fraction over all base locations, min max b_j
- Busy fraction for each demand location is given by $q_i = \sum_{j \in J} z_{ij} b_j$

Binary search

- Minimize number of ambulances while guaranteeing a certain coverage
- Perform binary search on number of ambulances p


Case Study

- Data for the Netherlands
- 24 regions
- 4010 demand locations, 40 474 per region
- Response time ≤ 15 minutes

Results 0.97

With region borders

Without region borders

26 June 2014

Ambulance planning with and without region borders

Results

	# Bases	# Ambulances
Regions (95%)	246	273
No regions (95%)	226	243
Regions (97%)	270	308
No regions (97%)	243	274
Regions (99%)	320	385
No regions (99%)	300	349

Results

	Min Coverage	Max Coverage
Regions (95%)	95.0%	97.1%
No regions (95%)	84.0%	99.2%
Regions (97%)	97.0%	99.0%
No regions (97%)	91.0%	99.4%
Regions (99%)	99.0%	99.5%
No regions (99%)	96.2%	99.8%

Results

	Comp. Time (s)	Avg. Gap
Regions (95%)	447	0%
No regions (95%)	4910	0.01%
Regions (97%)	449	0%
No regions (97%)	6999	0.02%
Regions (99%)	485	0%
No regions (99%)	7016	0.03%

Conclusions

- Number of ambulances can be reduced by ignoring region borders
- Coverage threshold not guaranteed for each region
 - \rightarrow Further research

Questions?

essen@cwi.nl